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Abstrat

The dual of a surfae is the set of all tangent planes to a surfae. Duals are a useful

tool for gaining geometri information about a surfae. Whilst duals theoretially lie

in RP

3

they an be projeted into R

3

where they an be visualised on a omputer.

We present a general sheme for visualising duals, and disuss the advantages

and disadvantages of di�erent types of projetions. Parts of the visualising proess

involves rotations in R

4

and we desribe one method for speifying suh a rotation.

Any projetion from RP

3

to R

3

will have some degenerate points and we disuss

how suh points an be easily removed.

Categories and Subjet Desriptors: I.3.5 [Computer Graphis℄: Computa-

tional Geometry and Objet Modeling - urves, surfae and objet representation,

geometri algorithms.

General Terms: Algorithms, Experementation.

Additional Key Words and Phrases: Duals, Hough transforms, sienti� visual-

isation, projetive spae.

1 Introdution

The dual of a surfae is the set of all tangent planes to the surfae. We an think of

the dual of a surfae as the set of points (a; b; ; d) in projetivised 3-spae, RP

3

, suh

that the plane ax+by+z = d is tangent to the surfae. Here the semi-olon indiates

that we are using homogeneous oordinates, we have (a; b; ; d) = (�a;�b;�;�d)

for all non-zero �. Typially the dual of a surfae S will form an other surfae in

RP

3

alled the dual surfae, S

�

. The dual has a number of interesting properties

whih reveal muh of the geometry of the original surfae. These inlude:
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1 If x lies on a paraboli line on S then the orresponding point on the dual, x

�

,

lies on a uspidal edge on S

�

.

2 If there is a plane tangent to S at x and y then S

�

has a self intersetion at

x

�

= y

�

.

3 If S has a usp of Gauss at x, then the dual has a swallowtail point at x

�

. (At

a usp of Gauss the paraboli line on S is tangent to the prinipal diretion

with zero prinipal urvature, and the surfae has a high order ontat with

the tangent plane. For a detailed investigation of usps of Gauss see [?℄.)

If we think of our surfae as lying in RP

3

then the dual of the dual gives us bak

our original surfae. This fat gives us the following dual results:

1

�

If x lies on a uspidal edge on S then x

�

lies on a paraboli line.

2

�

If S has a self-intersetion then S

�

has a bi-tangent plane.

3

�

If S has a swallowtail point at x then x

�

is a usp of Gauss.

These properties make the dual a useful tool for investigating problems in om-

puter vision and di�erential geometry. For instane in [?℄ the dual plays an impor-

tant part in the study of families of surfaes. The dual is losely linked to the Hough

transform [?℄ whih is widely used in omputer vision.

The study of dual surfaes is greatly enhaned by being able to onstrut a visual

representation of the dual on a omputer. One we have suh a representation it

an be examined using a 3D viewing pakage suh as Geomview [?℄, and questions

about the pattern of uspidal edges, swallowtail points, and self intersetions an

be quikly answered. In this paper we desribe a method for onstruting suh a

representation. This onsist of four main steps:

1. Calulate the dual in RP

3

(x2).

2. Projet into R

4

and apply a rotation in R

4

(x4).

3. Trim the surfae in R

4

to remove problem faets (x5).

4. Projet from R

4

into R

3

. (x3, x6, x7).

In fat we an use this algorithm to visualise any objet in RP

3

, simply by omitting

the �rst step. We have implemented this proess as a omputer program forming

part of the Liverpool Surfae Modelling Pakage [?, ?℄, other programs in the pak-

age are used to generate the surfaes to be dualised. In x8 we look at how this

visualisation has helped with investigations into at umbilis [?℄ and ross-aps [?℄.
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2 Calulating the Dual

Throughout this paper we will approximate all surfaes by a set of (not neessarily

at) polygons. If we have a surfae S represented by a set of polygons in R

3

with

verties (x

i

; y

i

; z

i

), and orresponding normals (l

i

; m

i

; n

i

); we an approximate the

dual as the set of polygons in RP

3

with verties (l

i

;m

i

;n

i

; l

i

x

i

+m

i

y

i

+ n

i

z

i

). Eah

point of this new set of polygons orresponds the the tangent plane l

i

x+m

i

y+n

i

z =

l

i

x

i

+m

i

y

i

+ n

i

z

i

, the �rst three oordinates give the normal and the fourth is the

distane from the origin to the tangent plane. In pratie we represent the dual by

the points (l

i

; m

i

; n

i

; l

i

x

i

+m

i

y

i

+ n

i

z

i

) in R

4

, this simpli�es the following steps.

The real problem with visualising the dual omes with �nding projetions from

RP

3

into R

3

. It is impossible to �nd a one to one map between these spaes;

typially we an either expet a) the image of some points lie at in�nity (projetive

map), b) some points in RP

3

have two images in R

3

(onformal map), or ) many

points in RP

3

are mapped onto the the same point in R

3

(pedal urve). The

following setions disuss the various projetions and how we an deal with the

degenerate points.

We should note at this point that many 3D graphis systems use homogeneous

oordinates internally, and perform a mapping fromRP

3

toR

3

as part of the graph-

is pipeline (this mapping is normally equivalent to the projetive map disussed

below). Typially these system have no speial treatment of points at in�nity so do

not help us with the speial problems of visualising duals. Furthermore the transfor-

mations used by these systems are not the most appropriate for visualising objets

in RP

3

.

3 The Projetive Map

The most frequently enountered projetion is the projetive or Klein map [?, ?℄.

This is obtained from the map (x; y; z;w)! (x=w; y=w; z=w) often alled the deho-

mogenizing map. We note that under this map all the points (x; y; z; 0) are mapped

to in�nity. For many surfaes suh as the double twisted M�obius band shown in

�gure ??, the points of interest will be mapped to in�nity and annot be examined.

In the ase of the band whih is de�ned by x = os(�) + tu

x

, y = sin(�) + tu

y

,

z = tu

z

where � runs between �� and �, t runs from -0.2 to 0.2, and (u

x

; u

y

; u

z

)

is the tangent vetor os(�)(os(�); sin(�); 0)+ sin(�)(0; 0; 1), the points (1; 0; 0) and

(�1; 0; 0) both have the same normal, (0; 0; 1), hene the dual has a self intersetion

at the point (0; 0; 1; 0), whih we will not be able to see under this projetion.

This problem an be partially solved by dividing by one of the other oordinates,

whih still gives a projetive map. Here (x; y; z;w) would be mapped to one of the

points (y=x; z=x; w=x), (x=y; z=y; w=y) or (x=z; y=z; w=z). Two projetions of the

twisted band are shown in �gure ??. In the �rst we divide by w and in the seond
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Figure 1: A double twisted M�obius band

Figure 2: Two di�erent projetions of the dual of a double twisted M�obius band,

using the projetive model

we divide by z. Note that in the �rst piture there is no indiation of the self-

intersetion, whih is learly shown in the seond. Even in this family there may be

surfaes where at least one of the points of interest on the dual will be mapped to

in�nity.

A far more general family of projetions is obtained by mapping the dual into R

4

using the map (x; y; z;w)! (x; y; z; w), applying a rotation in R

4

and then projet-

ing intoR

3

using the dehomogenizing map. Using this sheme we an �nd a rotation

suh that any hosen point (a; b; ; d), is rotated onto (0; 0; 0;

p

a

2

+ b

2

+ 

2

+ d

2

).

The image of the point after the projetion will be the origin, whih is typially the

enter of our view.

4 Speifying Rotations in R

4

Rotations in R

4

are represented by 4 x 4 orthonormal matries. To aid the viewing

proess we need to �nd a way the user an hoose a partiular matrix.
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One way to speify a rotation matrix, is to de�ne four numbers a, b, , d with

a

2

+ b

2

+ 

2

+ d

2

= 1, and uses these as the elements of the fourth row. The

rest of the omponents of the matrix an be omputed automatially to ensure the

orthonormal properties of the matrix. This fourth row is the most important as

its entries give the oordinates of a point whih will be rotated onto (0; 0; 0; 1) and

hene projeted to the origin. One method for speifying the four points, used by

C. Gunn in his 4-Axis graphial widget, is to hoose a point (a; b; ) in the unit ball

and set d =

p

1� a

2

� b

2

� 

2

.

We have used a di�erent method, whih is perhaps more intuitive. This involves

a generalisation of the \Glass Sphere" model for rotations in three dimensions. If

we are looking at a sphere in R

3

along the z-axis, we an bring any point on the

sphere into view by a repeated appliations of small rotations R

x

, R

y

about the x

and y axis. Rotations about the z axis are less important as they do not alter the

parts of the sphere whih are visible.

In four dimensions we de�ne three rotations, R

+

xw

, R

+

yw

, R

+

zw

given by the matries

0

B

B

B

�

� 0 0 �

0 1 0 0

0 0 1 0

�� 0 0 �

1

C

C

C

A

;

0

B

B

B

�

1 0 0 0

0 � 0 �

0 0 1 0

0 �� 0 �

1

C

C

C

A

;

0

B

B

B

�

1 0 0 0

0 1 0 0

0 0 � �

0 0 �� �

1

C

C

C

A

;

where � = os(�), � = sin(�) and � is some small angle (10 degrees in our implemen-

tation). Rotations involving the �rst three oordinates are again of little interest

and are better handled by a viewing program after the projetion. By repeated

appliations of the rotations R

+

xw

, R

+

yw

, R

+

zw

and their inverses R

�

xw

, R

�

yw

, R

�

zw

we

an bring any point on the four sphere into the viinity of (0; 0; 0; 1). As eah of

the rotations is only by a small amount the resulting image does not hange signi�-

antly with eah appliation. This makes it easy to see the e�et of the hanges and

navigate through the family of rotations. In fat when the R

xw

rotation is applied

the image will appear to move along the x-axis, with part of the image disappearing

o� one side of the sreen and reappearing on the other side. Hene we have a fairly

intuitive method of navigation. These rotations an be ontrolled by a set of six

buttons: eah time a button is pressed the orresponding rotation is applied. In

our implementation we atually use twelve buttons, six with � = 10

Æ

and six with

� = 1

Æ

. The user interfae for the program is shown in �gure ??. At the far right

are four buttons for seleting the default rotations whih map (0; 0; 0; 1), (1; 0; 0; 0),

(0; 1; 0; 0) or (0; 0; 1; 0) onto (0; 0; 0; 1). To the left of these are the twelve buttons

for applying the inremental rotations. One of the menu items displays the elements

of the matrix whih helps keep trak of the rotations.
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Figure 3: The user interfae for the dualisation program

5 Problems with faes rossing the plane w = 0

If we onsider the line in R

4

joining the points (1; 0; 0; 0:5) and (1; 0; 0;�0:5) the

endpoints will be projeted onto (2; 0; 0) and (�2; 0; 0) using the dehomogenizing

map. Conneting these points by a straight line would give a line passing through

the origin, however the atual image should really be a urve whih passes through

in�nity. When alulating the projetion we really want to �nd an approximation to

the urve. A related problem is that points with small values of w will be projeted

a great distane from the origin. Visually this is distrating, and improved results

are obtained by only showing the part of the surfae lying inside a sphere of radius

R.

These problems an be overome by �rst utting the surfae into two halves with

w > 0 and w < 0 and then �nding the points of the surfae where f(x; y; z; w) =

R

2

w

2

�x

2

�y

2

�z

2

� 0. This last equation de�nes a generalisation of a double one in

R

4

, the image of this one will give a sphere of radius R. Any line whih rosses this

one will be ut into two parts and we disard the part with f < 0. Figure ?? shows

a line AB with A = (1; 0; 0; 0:5), B = (1; 0; 0;�0:5) and the one orresponding to

a sphere of radius 4. The line will �rst be ut at the point C = (1; 0; 0; 0), and then

at the points D = (1; 0; 0; 0:25), E = (1; 0; 0;�0:25). We will keep the segments

AD and EB whih projet to the lines (2; 0; 0)::(4; 0; 0) and (�2; 0; 0)::(�4; 0; 0)

respetively. Straight lines o�er a fair representation of the atual image in the

region inside the sphere. The segments DC and CE are disarded as they projet

to urves outside the sphere, and also have one point at in�nity. The pitures in

�gure ?? show surfaes whih have been slied in this way whih an be ompared

with �gure ?? where this dual is shown without trimming, note the spurious faets.

The situation is further ompliated if we onsider the duals of surfaes where
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x

w

B

x +y +z −Rw =02 22 2 A

C

D

E

Figure 4: Cutting a line by a one

Figure 5: The dual of the M�obius band without the trimming step.
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x

w

B

x +y +z −Rw =02 22 2

A

−B

Figure 6: Choosing loal orientations.

the normals have not been given a onsistent orientation. One example of this is the

uspidal edge X = �s

2

� 0:3t

2

, Y = s

3

+0:5t

2

, Z = t shown in �gure ??a. Here the

normals hange sign through 180

Æ

as we ross the edge, so points on either side of

the edge will orrespond to diametrially opposite points in R

4

, say (x; y; z; w) and

(�x

0

;�y

0

;�z

0

;�w

0

) with x � x

0

et. Using the above trimming algorithm would

give several spurious points as show in �gure ??b. This problem an be overome by

hoosing loal orientations. Say we have two points A, B in R

4

suh that A �B < 0,

rather than onsidering the line onneting A and B we instead work with the line

joining A and �B. This line will give the orret intersetion points with the one

(Fig. ??). For trimming a fae A, B, C we atually work with the fae A, B

0

, C

0

where B

0

= B if A � B > 0 and B

0

= �B if A � B < 0 and similarly for C

0

. This

onvention only works loally, i.e. onsidering eah fae separately, where it is a

reasonable assumption that the points are lose together in RP

3

. Figure ?? shows

the orret dual of a uspidal edge obtained in this way.

6 The onformal map

We an think of RP

3

as the set of lines in R

4

whih pass through the origin. If we

take the intersetion of these lines with the lower hemisphere of the 3-sphere in R

4

,

we an represent any objet in RP

3

as a set of points in the three-sphere. Expliitly

we use the map (x; y; z;w)! sign(w)=l � (x; y; z; w) where l =

p

x

2

+ y

2

+ z

2

+ w

2

.

We an then use any of the well-known projetions of the 3-sphere in to R

3

(see

for example [?, ?℄). The most useful of these is the onformal or stereographi

projetion where we projet from the point (0; 0; 0; 1) onto the hyperplane w = �1

i.e. (x; y; z; w) ! 2=(1 � w)(x; y; z). We an see that the lower hemisphere will

be projeted into the interior of the ball of radius 2. This gives us an important

property for visualisation: the whole of of a dual surfae an be seen at the same

time, with the autionary note that antipodal points on the boundary of the ball
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(a)

(b) (c)

Figure 7: A uspidal edge (a) and its dual whih has been trimmed using a naive

method (b) and taking loal orientations into aount ().
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Figure 8: Two di�erent projetions of the double twisted M�obius band using the

onformal model.

should be identi�ed. We an use the same rotations and trimming algorithms from

the previous setions to give a whole family of projetions. In this ase interseting

with a one insures the image lies stritly in the interior of the ball and any problems

with the antipodal points are avoided. Figure ?? shows the image of the twisted

band using the onformal projetion and the same two rotations as in �gure ??.

Even though though the self intersetion lies at in�nity in the �rst of these pitures,

there are still strong lues as to its existene whih were not indiated using the

projetive map.

Using the onformal map most of the properties of the dual are preserved. How-

ever onformal maps typially map straight lines to irles, so we need to re-write

2

�

:

2

�

If S has a self-intersetion then the dual S

�

has a bi-tangent sphere.

We also lose the property that the dual of a dual gives us our original surfae. In

many appliation the ability to see the whole of the dual outweighs the loss of this

information. As straight lines map to irles we should really use urves for the

boundaries of our polygons. In pratie this step is not neessary provided we have

a �ne enough mesh of polygons approximating our original surfae.

7 Other Projetions

One the mehanism for alulating the dual, performing rotations, and trimming

the surfae have been set up it is an easy matter to add other projetions. Let

(x; y; z; w) be a point on the dual inR

4

. Some other examples of projetions inlude:

The Gauss Map: (x; y; z; w) ! 1=

p

x

2

+ y

2

+ z

2

(x; y; z). This maps normals at

eah point on S onto its spherial image on the unit sphere. This map has

been extensively studied [?℄ and makes apparent many features of the original
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surfae. Paraboli lines beome folds in the image and Cusps of Gauss beome

usps on the fold line. However bi-tangent lines an not be identi�ed.

The Pedal Curve: (x; y; z; w) ! (xw; yw; zw). This map piks out the point on

the tangent plane to S losest to the origin. Most of the features of the dual

are represented here, and for a ompat surfae the image will be ompat,

however all the tangent planes through the origin will be represented by a

single point, the origin.

The Geomview program allows hyperboli, and spherial spaes to be viewed

as if the viewer lived inside the spae [?℄. Instead of using the normal Eulidean

matrix to determine the straight lines for the light paths, the appropriate metri for

hyperboli or spherial spae determine the geodesis in that spae and hene what

parts of the surfaes an be seen. Motions through this spae are also determined

using these metris. This o�ers a very di�erent method for studying the surfae,

rather than the dual being viewed as an objet we ould pik up and examine, the

dual beomes an objet whih we y around to get to the points of interest. For

questions like \How many usps does the dual of this surfae have?" the previous

methods may be more appropriate. In onjuntion with this virtual method we an

represent a dual surfae in a number of ways:

Positive Hemisphere: (x; y; z; w)! sign(w)=l � (x; y; z; w);

Negative Hemisphere: (x; y; z; w)! �sign(w)=l � (x; y; z; w);

Oriented version: (x; y; z; w)! 1=l � (x; y; z; w);

where l =

p

x

2

+ y

2

+ z

2

+ w

2

. The �rst two of these give images whih do not

depend on the orientation, i.e. if we reverse the diretions of the normals on the

original surfae we will still get the same points on the four sphere. The third

projetion respets orientation, reversing the diretion of the normal will give an

antipodal point. One �nal method is obtained by taking the unions of the images

in the positive and negative hemispheres, this reates a double version of the dual

whih appears to be ontinuous as we y around it.

So far we have always onstruted the dual with respet to the origin: when

onstruting the dual we take the omponents of the normal vetor and the distane

from the origin as our point in RP

3

. It may well be the ase that the origin is

not the best plae to dualise about, for example when the surfae atually passes

through the origin. It is a simple matter to hange the de�nition of the dual, and

use (l;m;n; l(x � x

0

) + m(y � y

0

) + n(z � z

0

)) as the dual of the point (x; y; z)

with normal (l; m; n). The values of x

0

, y

0

, z

0

an then be spei�ed by the user.

Changing the enter in this way has no e�et on the struture of uspidal edges and

self intersetions of the dual, but may help to avoid problems with the w = 0 plane.

This is equivalent to translating the surfae and then alulating the dual.
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Figure 9: The dual of a slight deformation of a at elliptial umbili.

8 Conlusion

So far the omputer program desribed here has proved useful in a number of in-

vestigations, in singularity theory. In the study of at umbilis [?℄ Tari and myself

quikly produed pitures of duals of the two ases, (elliptial and hyperboli), and

also of slight deformations of these surfaes whih show a more generi geometry.

Figure ?? show the dual of a slight deformation of an at elliptial umbili, note

how the dual has three swallowtail points linked by a uspidal edge. Furthermore

the dual also ontains a triple point (hidden from view). This allowed us to quikly

dedue the geometry of the original surfae, whih must have three usps of Gauss,

and one tri-tangent plane. Whilst the struture of paraboli lines on a surfae is

easy to alulate, �nding bi-tangent planes typially involves solving three equations

in four unknowns whih an take a onsiderable time, suh urves are very apparent

when we look at the dual.

A trikier investigation was the duals of ross-aps [?℄, parameterised by

(u; uv; au

2

+ buv + v

2

+ O(3)). Here the dual of the atual ross-ap point should

give a line in RP

3

(taking the limiting tangent planes as we approah the ross-

ap point from di�erent diretion give a one parameter family of planes). Whilst

the above program an not deal with suh singular points, we an remove a small

neighbourhood of the origin and alulate the dual of the resulting surfae. If we

take a small enough neighbourhood the dual will have an edge orresponding to this

exeptional line. Here the onformal projetion is partiularly useful as it enables

us to see the whole of this edge, whih will always ut the plane w = 0 no matter

what rotation we use, (Fig. ??).
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Figure 10: The dual of a ross-ap.
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